Influence of synaptic vesicle position on release probability and exocytotic fusion mode.

نویسندگان

  • Hyokeun Park
  • Yulong Li
  • Richard W Tsien
چکیده

Neurotransmission depends on movements of transmitter-laden synaptic vesicles, but accurate, nanometer-scale monitoring of vesicle dynamics in presynaptic terminals has remained elusive. Here, we report three-dimensional, real-time tracking of quantum dot-loaded single synaptic vesicles with an accuracy of 20 to 30 nanometers, less than a vesicle diameter. Determination of the time, position, and mode of fusion, aided by trypan blue quenching of Qdot fluorescence, revealed that vesicles starting close to their ultimate fusion sites tended to fuse earlier than those positioned farther away. The mode of fusion depended on the prior motion of vesicles, with long-dwelling vesicles preferring kiss-and-run rather than full-collapse fusion. Kiss-and-run fusion events were concentrated near the center of the synapse, whereas full-collapse fusion events were broadly spread.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exocytotic Fusion Mode Influence of Synaptic Vesicle Position on Release

clicking here. colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to others here. following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles ): July 15, 2013 www.sciencemag.org (this information is current as of The following resources related to this article are availa...

متن کامل

Spontaneous and evoked release are independently regulated at individual active zones.

Neurotransmitter release from synaptic vesicle fusion is the fundamental mechanism for neuronal communication at synapses. Evoked release following an action potential has been well characterized for its function in activating the postsynaptic cell, but the significance of spontaneous release is less clear. Using transgenic tools to image single synaptic vesicle fusion events at individual rele...

متن کامل

Neurotransmitter : Release

The nervous system is composed of networks of cells that engage in coordinated circuits to permit neural function. Within these precise neural circuits, communication between individual cells is primarily chemical in nature. Neurotransmitter release via exocytosis of neurotransmitter-filled synaptic vesicles is a fundamental step in this process. Here we overview the biochemical processes that ...

متن کامل

Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release

Synaptic vesicle fusion at synapses is triggered by increases in cytosolic Ca2+ levels. However, the identity of the Ca2+ sensor and the transduction mechanism of the Ca2+ trigger are unknown. We show that Complexins, stoichiometric components of the exocytotic core complex, are important regulators of transmitter release at a step immediately preceding vesicle fusion. Neurons lacking Complexin...

متن کامل

SNARE force synchronizes synaptic vesicle fusion and controls the kinetics of quantal synaptic transmission.

Neuronal communication relies on rapid and discrete intercellular signaling but neither the molecular mechanisms of the exocytotic machinery that define the timing of the action potential-evoked response nor those controlling the kinetics of transmitter release from single synaptic vesicles are known. Here, we investigate how interference with the putative force transduction between the complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 335 6074  شماره 

صفحات  -

تاریخ انتشار 2012